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Abstract

Equilibrium Propagation (EP) is an algorithm intrinsi-
cally adapted to the training of physical networks, thanks to
the local updates of weights given by the internal dynamics
of the system. However, the construction of such a hardware
requires to make the algorithm compatible with existing
neuromorphic CMOS technologies, which generally exploit
digital communication between neurons and offer a limited
amount of local memory. In this work, we demonstrate that
EP can train dynamical networks with binary activations
and weights. We first train systems with binary weights and
full-precision activations, achieving an accuracy equivalent
to that of full-precision models trained by standard EP on
MNIST, and losing only 1.9% accuracy on CIFAR-10 with
equal architecture. We then extend our method to the train-
ing of models with binary activations and weights on MNIST,
achieving an accuracy within 1% of the full-precision ref-
erence for fully connected architectures and reaching the
full-precision accuracy for convolutional architectures. Our
extension of EP to binary networks opens new solutions for
on-chip learning and provides a compact framework for
training BNNs end-to-end with the same circuitry as for
inference.

1. Introduction

Conventional deep learning models, trained with error
backpropagation (BP), have demonstrated outstanding per-
formance at multiple cognitive tasks. But the training process
is so energy consuming [32, 33] that it questions the environ-
mental sustainability of AI deployment [21]. These artificial
neural networks are actually trained on un-optimized von
Neumann hardware with a delocalized memory, such as
GPUs or TPUs. Furthermore, they struggle to fully bene-
fit from a hardware which provides local memory access
at neuron level as their learning rule, backpropagation, is
fundamentally non-local.

Equilibrium Propagation (EP) [30] is a learning frame-

work that leverages the dynamics of energy-based physical
systems fed by static inputs to compute weight updates with
a learning rule local in space [8] which can also be made
local in time [9], and in addition scales to CIFAR-10 [20].
Today, EP is developed on standard hardware (GPU) that 1)
does not provide for the low power and the computing effi-
ciency a dedicated hardware implementation might exhibit
[34, 23] and 2) prevents EP to scale to large scale datasets
such as ImageNet due to the duration of simulations. An EP-
dedicated hardware would reduce the energy consumption
of training by two orders of magnitude compared to GPUs
and accelerate training by several orders of magnitude [24],
while being competitive on large scale benchmarks in terms
of accuracy since the gradients estimates prescribed by EP
are equivalent to those given by BPTT [8].

The main asset of EP is the ability of on-chip learning,
especially when the memory and the computational budgets
dedicated to training and inference are constrained (e.g. em-
bedded environments). EP also naturally suits for training
physical systems intrinsically dynamical whose dynamics
are unknown and hardly derivable [19, 36, 24]. EP therefore
appears as a solution for on-chip training for embedded sys-
tems and dynamical hardware, two cases with which BP is
not compatible without major adaptation.

EP is however based on full-precision (64 bits floating
point) weights and activations that do not match the cur-
rent requirements of such hardware systems. Full-precision
weights overload the memory capacity of chips when they
are stored digitally [11, 34], and are prone to noise and hard
to read when stored with emerging synaptic nano-devices
[2, 35, 14, 15]. Moreover, analog activation functions are
not directly compatible with widely-used digital communi-
cations between neurons [34].

In this paper, we address the issue of on-chip learning via
EP by training dynamical systems having binary activations
and weights.We first leverage the recent progress made in
Binary Neural Networks (BNNs) optimization [13], to bina-
rize the synapses in energy-based models trained by EP. The
optimization of weights is performed using the inertia of the



gradient. This lowers the memory required for training such
systems compared to real-valued (“latent”) weights optimiza-
tion, traditionally used for training BNNs. We then binarize
the activation functions, yielding an easy way to compute
the local gradient while supporting a digital communication
between neurons. More precisely, our contributions are:

• We introduce a version of EP that can learn recur-
rent binary weights assuming full-precision activations
(Fig. 1a). For simplicity, we call this version of EP
“binarized EP”. Our implementation uses a novel weight
normalization scheme directly learnable by EP. We are
able to maintain an accuracy similar to full-precision
models on fully connected and convolutional architec-
tures on MNIST. We extend these results to the CIFAR-
10 task, with performance only degraded by 1.9 % from
that achieved with the full-precision counterpart trained
by EP [20].

• We extend our technique to fully binarized dynamical
networks where both weights and neuron activations are
binarized (Fig. 1b). We demonstrate successful train-
ing on fully connected and convolutional architectures
on MNIST with a slight degradation (between 0.2 and
1%) with respect to standard EP. This “fully binarized”
version of EP achieves binary communication between
neurons while reducing the memory required to com-
pute the local gradient to 1 bit, making the gradient
ternary.

• Our code is available at: https://github.
com / jlaydevant / Binary - Equilibrium -
Propagation.

2. Background
Energy-based models. As emphasized above, our work
focuses on dynamical energy-based neural networks as op-
posed to purely feedforward models. More precisely, denot-
ing s the state of the neurons at a given time, ρ(s) the activa-
tion function of the neurons, x an input and θ = {W, b} the
parameters of the model, we assume dynamics of the form:

ds

dt
= −∂E

∂s
(x, s, ρ(s), θ), (1)

where E(x, s, ρ(s), θ) denotes an energy function describ-
ing the system of interest. Given x and θ, the system evolves
according to Eq. (1) until reaching a steady state s∗ which
minimizes the energy function: this constitutes the first phase.
Given a target y for the output layer of the system, the learn-
ing objective is to optimize the synaptic weights θ to mini-
mize the loss:

L∗ = `(s∗, y) (2)

where ` denotes a cost function that outlines the discrepancy
between s∗ and y. After learning, the system evolves to
steady states of minimal prediction error.

(a) Binary weights (Section 3)

(b) Binary weights and activations (Section 4)

Figure 1: Building blocks of binarized EP: two neurons com-
municate bidirectionally through a binary synapse. The color
code highlights the precision of each variable: the synaptic
weight (bold red) is binary and the internal state of the neu-
rons (skt ), as well as the momentum (m) averaging the gra-
dient (bold blue), are full-precision. The activations (ρ(skt ))
and the equilibrium activations (ρ(sk∗)) are full-precision
variables (blue) in Section 3 but binary (red) in Section 4.
The gradient estimate (g) prescribed by EP (bold blue) is
a full-precision variable in Section 3 but is ternary (bold
green) in Section 4. Every neuron also has a bias which is
full-precision and does not appear on the figure for clarity.

Equilibrium Propagation (EP). While the learning ob-
jective could be optimized by backpropagating the prediction
error backward in time (BPTT), EP instead proceeds with a
second phase where the dynamics of Eq. (1) is changed into:

ds

dt
= −∂E

∂s
− β ∂`

∂s
, (3)

where β denotes a scalar nudging parameter. In this way,
the system evolves along Eq. (3) towards decreasing the cost
function ` until reaching a second steady state sβ∗ . In their
foundational paper, Scellier & Bengio [30] proved that L∗
could be minimized using the local gradient estimate:

gθ =
1

β

(
∂E

∂θ
(x, sβ∗ , θ)−

∂E

∂θ
(x, s∗, θ)

)
, (4)

which typically translates, for the weights of a fully con-
nected layer, to [30]:

∆Wij =
1

β

(
ρ(sβi,∗)ρ(sβj,∗)− ρ(si,∗)ρ(sj,∗)

)
, (5)

where ρ denotes an activation function. EP has extremely
attractive features for neuromorphic chip design: the same
dynamics sustain both inference (Eq. (1)) and error propaga-
tion (Eq. (3)), and the learning rule is local (Eq. (5)).



Binary Neural Networks (BNNs). BNNs were first in-
troduced by Courbariaux et al. [6] to reduce the memory
footprint and the cost of operations in feedforward neural
networks at inference time, later scaled to hard visual tasks
[29]. In BNNs, the weights and activations are constrained
to the binary values {−1,+1}. During BNN training, each
binary weight is paired with a full-precision “latent” weight
which undergoes weight updates. Binary weights are taken
equal to the sign of the latent weights and are used for the
forward and the backward passes. After training, the latent
weights are discarded.

Binary Optimizer without latent weights (BOP). Al-
though latent weights in BNNs accumulate weight updates,
Helwegen et al. [13] suggested that they were not weights
in the strictest sense (they are not used at run time) but were
only meant to convey inertia for the optimization of the bi-
nary weights. Based on this insight, Helwegen et al. [13]
proposed a Binary Optimizer (BOP) which flips the binary
weights solely based on the value of their associated mo-
mentum (without latent weights per se): if the momentum is
large enough and crosses a threshold from below, the binary
weight is switched. By using one full precision variable
instead of two per synapse, BOP is of definite interest to
reduce the memory footprint of BNN training, which is why
our work heavily relies on this technique (see Section 3).
BOP has two hyperparameters: the value of the flipping de-
cision threshold τ , and the adaptativity rate γ. The larger τ ,
the less frequent the binary weight flips and the slower the
learning. On the other hand the larger γ, the more sensitive
the momentum to a new gradient signal, the more likely a
binary weight flips. The BOP algorithm is summarized in
Alg. 1.

Algorithm 1 BOP [13].
Input: g, m,W , γ, τ .
Output: m,W .
m← γg + (1− γ)m
for i ∈ [1, d] do

if |mi| > τ and sign(mi) = sign(Wi) then
Wi ← −Wi

end if
end for

Related work. Spiking neural networks (SNNs) are mod-
els that compress the communication between neurons to
one bit. They are thus compatible with digital and energy
efficient hardware [25, 10, 1, 7]. Most existing hardware
implementations of SNNs on neuromorphic platforms use
Spike Timing Dependent Plasticity (STDP) as a learning
rule [28]. Despite its low accuracy on complex tasks, the lo-
cality of STDP indeed enables compact circuits for on-chip

training. This shows the importance of making EP com-
patible with digital hardware: its local learning rule can be
implemented with compact circuits and the accuracy greatly
improved compared to STDP as EP optimizes a global ob-
jective junction.

Other studies have investigated how much synapses and
(or) neural activations of energy-based models could be com-
pressed when trained by EP. Mesnard et al. [26], O’Connor
et al. [27] and Martin et al. [24] showed that EP can train net-
works where neighboring neurons communicate with spikes
only. However all these techniques require full precision
weights, as well as an analysis of the spike trains in order to
determine the firing rates giving the gradients and are only
demonstrated on MNIST or non-linear toy problems.

Ji & Gross [18] have studied the effect of weight and
gradient quantization of an energy-based model trained by
EP, showing that at least 12 or 14 bits are required to achieve
less than 10% test error on MNIST. Here we show that
the weights (at all time) and the neural activations (at read
time) can be compressed down to 1 bit only, yielding ternary
gradients (at read time) and binary communication between
neurons in the system. We discuss how the full-precision
pre-activations and accumulated weight momentum can be
handled in a neuromorphic chip. Finally, our work is the first
to demonstrate energy-based model compression with EP on
CIFAR-10.

3. EP Learning of Recurrent Binary Weights
with Full Precision Neural Activations

In this section, we show that we can train dynamical
systems with binary weights and full precision activations by
EP with a performance on MNIST and CIFAR-10 close to the
one achieved by their full-precision counterparts trained by
EP [8, 20]. Our technique relies on the combined use of BOP
described in Alg. 1 and of a proper weight normalization to
avoid vanishing gradients. Therefore, we first describe how
EP can be embedded into BOP (Alg. 2). Then, we propose
two weight normalization schemes: one with a fixed scaling
factor taken from [29], another one with a dynamical scaling
factor directly learned by EP. We show that the use of the
learnt weight normalization, which naturally fits into the EP
framework, considerably improves model fitting and training
speed on MNIST and CIFAR-10.

3.1. Feeding EP weight updates into BOP

Working principle. We explain here how to use BOP to
optimize the binary synapses given the gradient computed
with EP. At each training iteration, the first steps of our
technique are the same as standard EP: the first phase and
the second phase are performed as usual and the EP gradient
estimate g is obtained from the steady states s∗ and sβ∗ for
each synaptic weight. Thereafter, g is directly fed into the



BOP algorithm (Alg. 1): for each synapse connecting neuron
j to neuron i, the EP gradient estimate gij conveys inertia to
the synaptic momentum mij , and the binary synaptic weight
Wij is flipped or not, depending on the value ofmij . Finally,
as usual in BNNs [6], the biases are full-precision and are
updated with standard Stochastic Gradient Descent (SGD).
We summarize all those steps in Alg. 2, where we have
highlighted binarized variables in bold red for clarity. With
this procedure, we have a system in which the synapses are
binarized at all time. In this section we use a full-precision
activation function for the neurons, the hardsigmoid, and full-
precision gradients. The binarization of activation functions
and ternarization of gradients is addressed in Section 4.

Algorithm 2 EP learning of dynamical binary weights (with
simplified notations). Binarized variables are in bold red.
When the neural pre-activations are binarized (Section 4),
the EP gradient estimate g is ternarized (in bold green),
otherwise full precision (Section 3).
Input: x, y, s, β, θ = {W, b}, η, m, γ, τ .
Output: θ = {W, b}, m.

Free phase:
for t ∈ [1, T ] do
s← s− dt× ∂E(x,s,W,b)

∂s
end for
s∗ ← s
Nudged phase:
for t ∈ [1,K] do
s← s− dt× ∂E(x,s,W,b)

∂s − β × ∂`(y,y)
∂s

end for
sβ∗ ← s
Compute EP gradient with sβ∗ and s∗:
g← − 1

β

(
∂E
∂θ (x, sβ∗ ,W, b)− ∂E

∂θ (x, s∗,W, b)
)

Apply BOP (Alg. (1)):
m, W = BOP(g,m,W, γ, τ)

Update biases with SGD:
b← b+ η × g

Hyperparameter tuning. Similarly to [13], we monitor
the number of weight flips per epoch and layer-wise in order
to tune the hyperparameters of BOP, using the metric:

πlayerepoch = log

(
Number of flipped weights
Total number of weights

+ e−9
)

(6)

Heuristically, πlayerepoch reflects a trade-off between learning
speed (high πlayerepoch) and stability (low πlayerepoch). We measure
πlayerepoch in the regions of γ and τ where learning performs
well, and use this value of πlayerepoch in return as a criterion to
tune γ and τ on new models.

3.2. Normalizing the Binary Weights with a fixed
scaling factor

When binarizing synaptic weights to ±1, neural activ-
ities may easily saturate to regions of flat activation func-
tion, resulting in vanishing gradients. It is especially true
with the hardsigmoid activation function often used with EP.
Batch-Normalization [17] used by Courbariaux et al. [6] and
Hubara et al. [16] helps with this issue by recentering and
renormalizing activations by computing the batch statistics.
Batch-Normalization has been introduced in recurrent neural
networks such as LSTMs to process sequence tasks [22] but
it does not translate directly to energy-based models. The
normalization scheme should indeed itself derive from an
energy function in order to be learnable, which restricts the
choice of candidate normalizations. However, the goal in
convergent dynamical systems processing static inputs is
not to center neural activations at every time step, but rather
at their steady state. Moreover, using batch-based weight
normalization schemes is far from straightforward from a
hardware prospective. For this purpose, we first normalize
the binary weights with a static scaling factor.

Static XNOR-Net weight scaling factor. In the design of
their XNOR-Net model, Rastegari et al. [29] introduced a
scaling factor to minimize the difference between the binary
synapses and the corresponding set of full-precision “latent”
weights at each layer. This scaling factor is updated at each
training iteration and depends on the size of two adjacent
layers and on the magnitude of these latent weights. The
scaling factor reads in our context:

αn,n+1 =
||winit

n,n+1||1
dim(winit

n,n+1)
(7)

where n is the index of a layer, winit
n,n+1 are the full-precision

random weights used to initialize the binary weights. Using
this scaling factor, we initialize each binary weights, layer
by layer, as Wn,n+1 = ±αn,n+1. Contrarily to XNOR-
Net where the scaling factor is updated at each forward
pass, we first keep the scaling factor fixed to its initial value
throughout training. We show in Section D that this scaling
factor is crucial to train recurrent binary weights by EP.

Results. We investigate fully connected architectures (with
one and two hidden layers) on MNIST and convolutional
architectures (with two and four convolutional layers) on the
MNIST and CIFAR-10 datasets. We employ prototypical
models to speed up training as in [8]. Our results (Table 1
- “EP - Binary Synapses”) are benchmarked against those
of full precision models (Table 1 - “EP - Benchmark”) and
those obtained by BPTT+BOP (Table 1 - “BPTT - Binary
Synapses”). Note that for a given architecture, the number



Table 1: Error of EP and BPTT on networks having binary synapses with a fixed or a dynamical scaling factor - Results are
reported as the mean over 5 trials ± 1 standard deviation - Benchmark performances are taken from [8, 20]

EP - Binary Synapses EP BPTT
Fixed α Dynamical α Benchmark Binary Synapses

Dataset Model Test Train Test Train Test Test

MNIST (1fc) 2.07 (0.02) 0.77 1.7 (0.04) 0 2.00 2.14 (0.06)
MNIST (2fc) 2.48 (0.08) 0.29 2.28 (0.13) 0 1.95 2.38 (0.07)
MNIST (conv) 0.85(0.11) 0.46 0.88(0.06) 0.05 1.05 0.97 (0.03)
CIFAR-10 (conv) 16.8(0.3) 6.9 15.66(0.28) 5.54 13.78 14.45 (0.12)

of neurons we used per layer may not be the same as in
reference architectures – see 3.4 and Appendix F for details.

Overall, Table 1 shows that the normalization of weights
with a fixed scaling factor allows EP with binary synapses to
perform comparably to full-precision models trained across
different fully connected and convolutional architectures,
on MNIST and CIFAR-10. The fully connected architec-
ture which has one hidden layer trained on MNIST shows
no statistically significant loss of performance compared to
full-precision counterpart trained by EP. This architecture
with binary synapses reaches the same accuracy if trained
by (EP+BOP) or by (BPTT+BOP). The fully connected
architecture having two hidden layers trained on MNIST
with fixed scaling factors shows 0.5% performance degra-
dation compared to full-precision models trained by EP. For
the convolutional architecture trained on MNIST, we can
even observe a slightly better training and testing (-0.2%)
errors on model with binary synapses compared to full pre-
cision models trained by EP. We explain this improvement
by the cumulative use of the randomization of β and of the
regularization effect induced by the binarized architecture
itself [6]. Furthemore, the training framework (EP+BOP)
achieves a similar accuracy as the framework (BPTT+BOP).
Finally, the performance of our convolutional model trained
on CIFAR-10 is ∼ 3% less than the one of Laborieux et al.
[20], using the same architecture. Also, the network trained
by (EP+BOP) shows only 2.5% degradation of the accuracy
compared to the same network trained by (BPTT+BOP).

3.3. Normalizing the Binary Weights with a learnt
scaling factor

Dynamical weight scaling factor learned by EP. Using
fixed scaling factors gives high, yet sub-optimal accuracies
(see Fig. 4 in the Appendix). Bulat & Tzimiropoulos [4]
show that the scaling factor can be learnt by backpropagation
to extend XNOR-Nets. Here we derive a learning rule for
the scaling factor with the help of the theorem of Scellier &
Bengio [30] to ensure that it provides a gradient estimate of
the loss L∗ defined in Eq. (2). The reasoning to derive this
learning rule is the following. We split the binary weights
in two parts: Wn,n+1 ← αn,n+1 × wbinn,n+1 where wbinn,n+1

(a) MNIST

(b) CIFAR-10

Figure 2: Average training error as a function of the num-
ber of epochs for a convolutional architecture with binary
synapses trained on MNIST with a static (blue curve) or a
dynamical (red curve) scaling factor. Curves averaged over
5 trials ±1 standard deviation.

are the binary weights scaled to ±1 and the scaling factors
αn,n+1 are initialized as when they are fixed. The resulting
dynamics still derives from an energy function, and one can
derive a learning rule for αn,n+1 which reads as:

∆αn,n+1(β) = − 1

β

(
∂E

∂αn,n+1
(sβ∗ )−

∂E

∂αn,n+1
(s∗)

)
,

(8)
so that αn,n+1 is learned like any other network parameter,
and limβ→0 ∆αn,n+1(β) = − ∂L∗

∂αn,n+1
. In Section D the

learning rules for fully connected and convolutional archi-
tectures are derived in all the settings of EP.

Results. Fig. 2 illustrates on a convolutional architecture
the gain in performance obtained by learning the scaling
factor. Globally, this technique systematically results in
faster learning and better model fitting across all the models,



and almost always in better generalization as observed in
Table 1. Learning the scaling factor by EP is thus a powerful
alternative to Batch-normalization in convergent dynamical
systems as highlighted by Fig. 2.

3.4. Hardware implementation

Memory gain at run time. As often observed in binarized
architectures [6, 16], we achieve accuracy similar to the one
of full-precision models at the price of having 8 times more
hidden neurons in fully connected architectures (see Fig. 8
of Appendix F.1 for a more detailed analysis). In convolu-
tional architectures, we have used at most the same number
of output feature maps than their full precision counterparts
for computational efficiency. After training, our models use
2 and 7.5 less memory for the synapses for fully connected
architectures on MNIST (for two and one hidden layers re-
spectively), 9 and 54 less for the convolutional architectures
used on MNIST and CIFAR-10 respectively. In hardware,
these binary weights can be stored in digital memories [34]
or using nanoscale memristors [15].

Memory requirements at train time. The memory re-
quirements for training should be subject to a more careful
treatment. Inertia-based optimization (BOP) requires a sin-
gle full-precision variable: the momentum, compared to
the latent-weight counterpart often trained by elaborate op-
timization techniques such as (SGD + Momentum) which
uses at least 2 full-precision variables: the latent weight and
the momentum. Inertia-based optimization thus reduces by
at least a factor 2 the required memory for training. Further-
more, the memory required for storing the momentum of
BOP could be implemented by non-standard memories. In
fact, the discrete time update of the momentum (Alg. 1) can
be rewritten into a continuous time update rule which reads:

dm

dt
+ γ ·m(t) = γ · g(t) (9)

which naturally appears as the differential equation describ-
ing the evolution of the voltage of a capacitor. Capacitors
are CMOS-compatible, and highly linear which makes them
well suited for storing full-precision variables [2]. They can
thus be used to store the inertia, thereby lowering the mem-
ory requirement to one capacitor per binary weight and more
globally lowering the memory required for training.

4. EP Learning of Recurrent Binary Weights
with Binary Neural Activations

The techniques presented in the previous section use full-
precision neural activations. However, it is highly preferable
to rely on binary activation values in hardware. Binary read
and write errors can indeed be accommodated without too
much circuit overhead in neuromorphic systems [14] and

binary values are easier to pass between spatially distant
hardware neurons [34]. In this section, we show that we
can train dynamical system with binary weights and binary
activations by EP, resulting in a performance on MNIST
again approaching full-precision models on fully connected
and convolutional architectures. Our implementation relies
on two main components: the choice of a proper activation
function to binarize neural pre-activations, and output layer
augmentation. Combining these two techniques, we can
design dynamical systems which are sensitive to error signals
despite threshold effects and can compute ternary gradients
in return. The corresponding pseudo-algorithm is the same as
Alg. 2, except that the gradient estimate g is now ternarized.

4.1. Convergent neural networks with binary acti-
vations.

Ternarizing EP gradients. We can note from Eq. (5) that
the precision of the gradient g estimate provided by EP is
typically determined by the choice of the activation function
ρ. For instance, if ρ outputs binary values {0, 1}, we imme-
diately see from Eq. (5) that, for the parameters θ = {W, b},
the gradients has values:

gθ ∈
{
− 2

β
, 0,

2

β

}
. (10)

In practice β = 2 works well, resulting in ×40 gradient
compression compared to 64-floating point resolution.

However, binarizing neural activations comes at several
costs for the dynamics of the neurons. The energy function
of the system subsequently outputs a semi-discrete variable
which affects the dynamics of each neuron non trivially: if
the updates of neuron activations are simultaneous, the dy-
namics of the system may not converge [5]. In particular,
this precludes the use of prototypical models [8], that can
be employed to speed up training as we did in the previ-
ous section. Therefore, we must use standard energy-based
models as in [30] so that binary activations are updated only
when the full-precision pre-activations reach the threshold
of the activation function, thus non simultaneously. We next
detail some empirical properties the binary activation of the
neurons should have in order to define convergent dynamics.

Binarizing neural activations into {0, 1}. While we bi-
narize weights to opposite signs, we found that using the
sign activation function to binarize neural activations into
{−1, 1}, as usually done with BNNs to implement MAC op-
erations with XNOR gates, entails non-convergent dynamics.
This confirms previous findings on EP which emphasized
the importance of bounding the neural activations between 0
and 1 to help dynamics convergence using the hardsigmoid
activation function ρ(s) = max(0,min(s, 1)) [30]. There-
fore, our proposal here is to use the Heavyside step function



shifted by 0.5:

ρ(s) = H

(
s− 1

2

)
(11)

where H(x) = 1 if x ≥ 0, 0 otherwise. However, the energy
based dynamics of our models requires to gate ∂E

∂ρ by the
derivative of ρ as Eq. 1 rewrites as:

ds

dt
= −∂E

∂s
(x, s, θ)− ∂ρ(s)

∂s

∂E

∂ρ(s)
(x, ρ(s), θ). (12)

Noting that Eq. 11 is obtained by asymptotically sharpening
the narrowed hardsigmoid around 1

2 within [ 12 − σ,
1
2 + σ]

denoted ρ̂, namely:

ρ(s) = lim
σ→0

ρ̂(s, σ) = H

(
s− 1

2

)
(13)

we propose to substitute the derivative of ρ as:

∂ρ̂(s, σ)

∂s
≈ ∂ρ(s)

∂s
=

{
1
2σ if

∣∣s− 1
2

∣∣ ≤ σ
0 else

(14)

where σ is a parameter discussed in Appendix F. Therefore,
denoting ρ̂′ = ∂sρ̂ for simplicity, the free dynamics of s can
be approximated as:

ds

dt
≈ −∂E

∂s
− ρ̂′(s)∂E

∂ρ
(15)

4.2. Augmenting the Error Signal to Nudge Neurons
with Binary Activations

Binarization of activations can prevent the propagation
of errors. As the system sits at rest at the end of the first
phase of EP, upon nudging the output layer by the prediction
error, the motion of the system during the second phase of EP
encodes error signals [31, 8]. Therefore during the second
phase, a given neuron i needs to have its activation function
change from ρ(s∗,i) to a distinct ρ(sβ∗,i) to compute the error
gradient locally and transmit it backward to upstream layers.
However, when using a discontinuous activation function
like defined in Eq. (13), we may have ρ(s∗,i) = ρ(sβ∗,i) if
the pre-activation si of the neuron moves less than the value
of the activation threshold of ρ, thus zeroing the error signal,
or equivalently vanishing gradients. Consequently, we need
to ensure that for a sufficient number of neurons i:

∆si = |sβ∗,i − s∗,i| >
1

2
(16)

In order to satisfy Eq. (16) for a sufficient number of neu-
rons, we propose to increase the error signal by augmenting
the output layer so that each prediction neuron is replaced by
Nperclass neurons per class, inflating the output layer from
Nclasses toNclasses×Nperclass. We chooseNperclass in such
a way that the number of output neurons matches approx-
imately the number of neurons in the penultimate hidden

layer: Nperclasses ≈ Npenultimate

Nclasses
. In this way, the output

layer delivers a large and redundant initial error signal that
can push neurons beyond the activation threshold of ρ and
propagate across the whole architecture. Our solution is
reminiscent of the the use of auxiliary output neurons in [3],
albeit with a very different motivation.

4.3. Results

We investigate here fully connected (1 and 2 hidden lay-
ers) and convolutional architectures on MNIST. The first
layer receives full-precision inputs from the input layer and
binary inputs from the next layer. For a given architecture,
the number of neurons used per layer is different for both
situations: for the fully connected architectures we use 8192
neurons per hidden layer and the two convolutional layers
of the convolutional architecture have respectively 256 and
512 channels - see Appendix F for more details. We use
a randomized sign for β as prescribed by Laborieux et al.
[20] to improve the gradient estimate given by EP for all
simulations except for the fully connected architecture with
two hidden layers where we only use β > 0.

Figure 3: Average training error as a function of the num-
ber of epochs for a convolutional architecture with binary
synapses and binary activations trained on MNIST with a
classic output layer (10 output neurons - blue curve) or an
enlarged output layer (700 output neurons - red curve). Blue
curves are averaged over 2 trials±1 standard deviation - Red
curves are averaged over 5 trials ±1 standard deviation.

Fig 3 shows for the convolutional architecture a trend
observed for all models: when using 10 neurons in the out-
put layer, training fails (blue curve) while it succeeds upon
augmenting the output layer. It is here augmented by a factor
70 (red curve) which is required for the number of neurons
in the output layer to match the number of input neurons that
the last convolutional layer receives from the penultimate
convolutional layer: we multiply the number of channels in
the penultimate convolutional layer (256) by the kernel size
(5×5) and divide the result by the max pooling kernel size
(3×3) which gives ∼ 700 output neurons).



Table 2: Error achieved by EP with binary synapses & acti-
vations, and fixed scaling factors α - Results are reported as
the mean over 5 trials ± 1 standard deviation.

Fully binarized EP
Dataset Model Test Train

MNIST (1fc) 2.83 (0.06) 0.2
MNIST (2fc) 3.03(0.03) 0.84(0.17)
MNIST conv 1.14(0.08) 0.67(0.04)

Performance. The results obtained on MNIST with fixed
scaling factors are summarized in Table 2. On the fully con-
nected architectures, the accuracy approaches those obtained
with binary synapses and full-precision activations, with a
slight degradation of 0.8% for one hidden layer and 0.6% for
two hidden layers (see Table 1). The degradation is slightly
enhanced when we compare with the full-precision coun-
terpart trained by EP where the performance is degraded
by 0.8% for one hidden layer but 1% for two hidden layers.
We account the degraded performance of the architecture
which has two hidden layers by the fact that we use β > 0
which makes the estimation of the gradient less accurate
than when estimated with the sign of β random. We used
β > 0 because we found that reaching the second equilib-
rium point with β < 0 is possible but very long to get in
practice with a classic nudge. For the convolutional archi-
tecture trained on MNIST, we also report a performance
only 0.2% below the system which has binary synapses and
full-precision activations but within the error bars of the one
achieved by full-precision models as reported by [8]. We
think that optimizing the nudging strategy could improve the
error obtained with two or more hidden layers and will be
key in the future for scaling to CIFAR-10.

4.4. Gains for hardware

When binarizing the activation in addition to the synapses,
we had to increase the number of neurons in each layer com-
pared to full-precision models: by 16 for the fully connected
layers resulting in 8192 neurons per hidden layer and by 8
for the convolutional architecture which has 256 and 512
channels per respective layer, to get accuracy approaching
reported results with full-precision architectures. But consid-
erable gains in terms of memory and computing are achieved
due to the way the gradient is computed.

The gradient estimate gij is indeed now ternary (Eq. 10),
and can be easily computed with the subtraction of 2 AND
operations. With the notations of Eq. 5 it decomposes as:
one AND operation between si,∗ and sj,∗ and another one
between sβi,∗ and sβj,∗, which amounts to only 5 elementary
operations including the subtraction. In terms of memory,
neurons only have to store 1 bit as the first equilibrium state.
That way, the communication between neurons is not only
binarized, but in addition, compared to previous works on EP

achieving binary communication through spikes [26, 27, 24],
our method drastically reduces the memory to compute the
gradient. Indeed, spikes need to be stored for several time
steps to get an estimation of the firing rate of each neuron,
resulting in heavy memory requirements.

The computation of the MAC operation is also simple. It
cannot be obtained as in standard BNNs with a single XNOR
gate and popcount because this operation does not match our
choice of binary activations (0/1) and binary weights (-1/1).
However, it only requires the subtraction of the popcount of
2 AND gates, using simpler logical gates, and only doubling
their total number compared to usual BNNs.

Despite the fact that we need to enlarge the output layer
depending on the architecture, we show in Appendix E.3
that probing the state of one single neuron per class in the
output layer is sufficient to obtain almost the same accuracy
than when measuring the states of all the output neurons,
which is beneficial for lowering the energy consumption of
hardware (Figs. 6-7).

In addition, contrarily to BP performed in conventional
BNNs where the input of each layer is stored between the
forward and the backward passes in order to compute the
full-precision gradient, here we only need to store the 1 bit
activation after each phase in order to compute the gradi-
ent, which drastically reduces the memory requirements of
the model for training by a factor 40. The current imple-
mentation of binary EP on GPUs, however, still relies on
full-precision neuron state s(t) variables. In future imple-
mentation of binarized EP on dedicated hardware, these neu-
ron states can be implicitly encoded through the dynamics
of nano-devices, thus solving this issue [2].

5. Conclusion
As a conclusion, we provide here a binarized version of

EP that exhibits only a slight degradation of accuracy com-
pared to full-precision models. This version of EP offers the
possibility of training on-chip BNNs with compact circuitry
because the hardware required for training is the same as for
inference, whereas current BNNs are trained on conventional
hardware, before being transferred to compact, low-energy
chips. Finally, the version of EP with binary synapses and
full precision activations is of major interest for future fast,
low power hardware built on emerging devices. Joint devel-
opment of EP and hardware will be critical for adapting EP
to larger data sets.
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