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Abstract

We consider the training of binary neural networks
(BNNs) using the stochastic relaxation approach, which
leads to stochastic binary networks (SBNs). We identify that
a severe obstacle to training deep SBNs without skip con-
nections is already the initialization phase. While smaller
models can be trained from a random (possibly data-driven)
initialization, for deeper models and large datasets, it be-
comes increasingly difficult to obtain non-vanishing and
low variance gradients when initializing randomly.

In this work, we initialize SBNs from real-valued net-
works with ReLU activations. Real valued networks are
well established, easier to train and benefit from many tech-
niques to improve their generalization properties. We pro-
pose that closely approximating their internal features can
provide a good initialization for SBN. We transfer features
incrementally, layer-by-layer, accounting for noises in the
SBN, exploiting equivalent reparametrizations of ReLU net-
works and using a novel transfer loss formulation. We
demonstrate experimentally that with the proposed initial-
ization, binary networks can close up, and even surpass,
the teacher network accuracy.

1. Introduction

Neural networks with binary weights and activations
have much lower computation costs and memory consump-
tion than their real-valued counterparts [8, 10, 11, 21].
They are therefore very attractive for applications in mo-
bile devices, robotics and other resource-limited settings, in
particular for solving vision and speech recognition prob-
lems [2, 27].

Training binary neural networks poses several additional
challenges in comparison to real-valued ones. First, they
are not differentiable. This has been overcome in semi-
nal works [7, 12] by using straight-through (ST) estimators.
A clear understanding of such estimators is possible when
considering a stochastic relaxation of a binary network [25].
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The associated costs are i) the need to introduce noises in
each layer in order to make the loss function differentiable
in the expectation and ii) ST estimators are biased, which
may have a detrimental effect [25]. The training can take
longer than for real-valued networks but, with appropriate
hyper-parameters, succeeds in practice, achieving close to
100% training accuracy. In our view, there remain two chal-
lenges: how to make a good initialization so that deeper
binary models can be trained and how to improve the gen-
eralization gap to close up the performance of real-valued
networks.

The challenge of initialization can be seen from the fol-
lowing observations. At the first approximation, binary acti-
vations are similar to sigmoid activations and experience the
problem of vanishing gradients. Batch normalization [13]
helps a lot with this problem as it initially performs a data-
driven standardization of pre-activations [16, 24]. Never-
theless, large-scale models are typically trained in stages
where the initialization stage uses e.g. real-valued activa-
tions [15]. Moreover, real-valued residual paths are used to
alleviate the difficulty of training [14]. To our knowledge,
a successful training of non-residual convolutional archi-
tecture on large-scale dataset (e.g. ImageNet) has not been
demonstrated. In the framework of stochastic binary net-
works (SBN) [19, 22, 23, 25] an additional challenge is to
control the noise level of the stochastic relaxation so that the
stochastic gradient has a meaningful signal-to-noise ratio.

We propose to address both the generalization and the
initialization challenges by transferring intermediate fea-
ture representations from available real-valued networks.
Lower-level and mid-level features are known to be generic
across different tasks and transfering them, e.g., in fine-
tuning, leads to easier training and better generalization for
the target task [28].

Contribution In this work we transfer features from a
real-valued ReLU network to SBNs of the same architec-
ture on the same dataset. We do not yet demonstrate supe-
rior results in large-scale problems or cross-domain trans-
fer. Rather we propose a detailed study on a small-scale



CIFAR-10 dataset. ReLU networks are most commonly
used, readily available for many tasks and possess a bet-
ter performance than the best binary networks. Neverthe-
less, initializing binary networks from them is more diffi-
cult due to the unbounded response of ReLU activations.
We study how to binarize them block-by-block in order to
preserve intermediate feature representations. We find out
that it is essential to use ternary weights to transfer ReLU
networks. Incorporating ternary weights requires only two
binary convolutions and can be seen as just a moderate in-
crease of a binary neural network’s width. As the feature
transfer objective, we consider several choices and propose
to use the MSE loss on the activations of the next layer to
the one transferred. Since the transfer itself is performed by
SGD optimization, it, in turn, needs to be initialized. There-
fore, at the first approximation, we propose and study a new
method that aligns feature statistics while taking into ac-
count noises in the SBN model.

Experimentally we show that SBN layers can, to a large
extend, substitute ReLU layers, preserving at least a part of
functionality when initialized just based on simple statistics
and can be further optimized to produce deep representa-
tions close to the original ones. An SBN network initialized
with the proposed method and fine-tuned significantly im-
proves in accuracy and efficiency over strong baselines on
CIFAR-10 and even surpasses by 1.5% the accuracy of the
teacher real-valued network used for its initialization.

2. Related Work

The SOTA methods for training large-scale binary net-
works [4, 5, 15] use the initialization strategy of Bulat et al.
[3]: to firstly train a network with real weights and bi-
nary activations and then gradually anneal weights to bi-
nary. This is similar to starting by training models with
real weights and clipping-like non-linearities [6]. Other
works [7, 23] indicate that training with binary weights and
ReLU activations is a relatively simpler problem. Thus the
central gap we see is the binarization of activations. Al-
izadeh et al. [1] shows that initializing latent weights from
real-valued weights can provide a good initialization result-
ing in a seeped-up for training. At the same time Bulat et al.
[3] mention that the transition from a fully real-valued net-
work to a binary one [both weights and activations] causes
a catastrophic loss in accuracy often comparable to train-
ing from scratch. Martinez et al. [15] explore regularizing
transferring knowledge from the teacher network by adding
a dissimilarity of attention maps during training. These at-
tention maps only align simple statistics of activation maps,
and as we experimentally show are not sufficient for trans-
ferring features.

Transferring knowledge from a real-valued network to a
binary one has been considered by Du et al. [9]. The two
networks are trained simultaneously in their work, inter-

act both ways, however the interaction is only at the last
layer. It therefore serves more as a regularization rather
than allows to transfer generic intermediate representations.
Mishra & Marr [17], Polino et al. [20] use knowledge distil-
lation approach to train a quantized network, which utilizes
the teacher’s predictive distribution as soft targets.

In NN quantization, it is more natural to expect that a
real-valued network can provide a good initialization. In
particular MSE loss between quantized and non-quantized
features has been considered [18]. Zhuang et al. [30] uses
an auxiliary mixed-precision network that shares parame-
ters and is trained jointly with the low-precision network.
Zhou et al. [29] propose to regularize quantized weights by
the MSE loss from the real-valued weights.

3. Background and Problem Statement

Binary neural networks are commonly represented in
the literature with weights and activations in {—1,1} for
mathematical convenience. At the test time, they can be
equivalently implemented using {0, 1} encoding, binary
XNOR operations and few integer operations (summing bits
in the output of the binary convolution and comparing it
to a threshold). These operations are the most energy-
efficient [8]. SOTA binary networks, however, also include
floating-point multiplications [21] or floating-point para-
metric residual connections [5, 14, 15]. In the later archi-
tectures full-precision paths exist from any layer all the way
to the network output layer. Such connections significantly
mitigate the training difficulties but incur additional latency
and energy costs.

Basic SBN We will aim at training a network that does not
need floating point operations (except the input and output
layers). The basic BNN uses the following convolutional
layers:

a=W®x+b, (1a)
y = sign(a), (1b)

pre-activation

activation

where x,y, W are {—1, 1} binary, ® denotes convolution
with binary arguments and b is an integer.

Since binary activations are not differentiable and opti-
mizing over binary weights creates a combinatorial prob-
lem, a basic stochastic relaxation of the network is consid-
ered. It is obtained by making binary entities stochastic:

W =sign(V — 2), 2)
y = sign(a — §), 3

where V' € R* are called latent weights and Z and £ are
(vectors) of independent noises with a simple distribution.
In this relaxation, the expected loss of the network is differ-
entiable in latent weights V' and the straight-through method
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Figure 1: AIICNN network [

block: 6 block: 7 block: 8

] used in our experiments and its partition in logical blocks. In order to convert this model

to SBN, we process it sequentially, block by block, starting with the block 1. We first initialize a block to be converted
analytically, append it to the SBN model and perform transfer learning to match features of the referenced network for this

block and then proceed to the next block.

provides a biased estimate of the true gradient [25]. We ap-
ply ST estimators as proposed by [25]: they recommend
using logistic noises and identity straight-through estimator
for weights while the activation noises can be chosen freely
as long as the corresponding (non-identity) ST estimator is
used.

Problem Statement Considering the SBN model allows
gradients and latent weights to have a mathematically pre-
cise meaning and allows us also mathematically model in
which sense we want the SBN model to replicate the be-
havior of the ReLU network. As our working example we
use the simple AIICNN architecture in Fig. | — it uses only
convolutional layers with strides. We want to initialize an
SBN model of the same structure with binary activations.
Clearly, intermediate representations after binary and ReLU
activations take values in different domains and cannot be
aligned. We therefore define internal features of SBN at
block k as pre-activation a* and want them to approximate
pre-activations a™* of the ReLU network. Because a” are
stochastic due to injected noises, we pose the problem as
finding parameters V, b such that the expected value of pre-
activation over all SBN noises, Esgn[a*], approximates the
features a™* in the teacher network. In doing so, we also
need to keep the variance due to noises low enough in or-
der to be able to capture the representation accurately with
a small number of samples from SBN and to allow subse-
quent optimization with SGD.

4. Method

We initialize an SBN model from a ReLLU model incre-
mentally, replacing one block of layers at a time as illus-
trated in Fig. 1. We keep the first and the very last con-
volutional transforms of the ReLU network as real-valued.
Prior work on quantization has shown that they can be at
least quantized to low bit-width without accuracy degrada-
tion in practice and are not our main focus. Initialization of
one block consists of an optimization-free block conversion
which matches statistics of features over a batch of data, and

a more precise optimization-based feature matching.
4.1. Initialization Based on Statistics

It is a popular approach, e.g., in domain adaptation, to
align distributions by matching their means and variances.
The affine transform that achieves such alignment is found
by a simple formula of these statistics. It is, therefore, a
cheap and reasonable first step to transfer internal repre-
sentations. To allow a sensible transfer from the existing
ReLU network, we need to make certain adjustments to the
SBN architecture. We will show afterwards that at the test
time we can obtain a binary network equivalent to the basic
model (2). The goal of aligning prevarications leads to the
following definitions of blocks to be converted.

ReLU Block We define a block of ReLU network with
input 2% € R™ and output features a®® € R™ to consist of
the following operations applied sequentially:

input scaling u'* = 2% © t%, (4a)
activation  y' = ReLU(u'), (4b)
conv v =WExyl (4c)

output scaling ot = v® © s% + b, (4d)

where all entries are real-valued and ® denotes channel-
wise multiplication (t™ is a vector of the number of channels
of ). Common feed-forward NNs can be represented as
a sequence of such blocks, where the input and or output
scaling may be set to t® = s = 1. These scaling factors
will be used later on to perform equivalent transformations
on a block.

SBN Block In the SBN model we propose the following
representation of one building block:

input scaling u=1xQ®t, (5a)
activation y = [u— & > 0], (5b)
covv v=(Wrey—-W- ®vy), (5¢)

output scaling a=v® s+b, (5d)



where, compared to the basic model (2) we have rearranged
the order of operations, introduce a pair of (stochastic) bi-
nary {0, 1} weights W, W~ and real-valued parameters
t, s, b and used indicator Ju — £ > 0] instead of sign.

The following properties are important. 1) When such
blocks are composed, the adjacent affine transforms from
two blocks compose into one. The resulting affine trans-
form can be hidden at test time under binary threshold using
that [t © s +b— & > 0] =[x > 0], where 0 = (£ — b)/s
is the equivalent threshold that can be precomputed (for a
fixed noise sample & or its mean value). Thus at the test
time, extra affine transforms do not induce any extra com-
putation compared to (2).

2) Using the indicator [-] instead of sign for activations
appears equivalent for BNN, but it is not equivalent for SBN
due to the noises present in W. As will be seen below, us-
ing the indicator better corresponds to ReLU activations and
leads to lower variances downstream.

3) The difference of two binary convolutions is equiv-
alent to a convolution of the binary input y with a ternary
weight kernel W+ — T ~. On one hand this allows us to use
all the formalism and methods developed for SBNs [25].
On the other hand, ternary weights can model the teacher
real-valued weights significantly more accurately. In par-
ticular, most of the weights in the teacher network are close
to zero and can be removed from the network (zerowed)
as demonstrated by works on network sparsity and com-
pression. Therefore for transferring such weights it is im-
portant to be able to represent 0. The basic SBN model
necessarily has all inputs connected to all outputs (by +1
weights) and needs a combination of highly correlated in-
puts and anti-correlated weights in order to represent spar-
sity. Consider also that the ternary model eq. (5) can imple-
ment AND, OR and NOT logical operations on g, which the
basic SBN model cannot. We should note that the methods
in the literature often increase the number of channels com-
pared to the reference real-valued architecture (motivated
by the need to increase the representation power of SBN).
Increasing the number of channels twice leads to a x4 in-
crease in the number of weights and computation cost. In
comparison, the proposed block structure only doubles the
computation complexity.

4.1.1 Initialization of Activations

We make the following observation: if we choose ¢ to be
uniform in [0, 1], the expected activation value expresses as

E.fylu] =P(u— €= 0) =P(§ <u)
= F¢(0) = min(max(u,0), 1), (6)
which matches ReLU activation on [—o0, 1] and saturates

to 1 for u > 1. Therefore, supposing = 2% (blocks in
SBN and ReLU networks receive the same inputs), we will

Figure 2: t-SNE embeddings of the last linear layer (top
leff), when converting one block using binary weights (fop
right) and when converting the same block using ternary
weights (bottom) in section 4.1.2.

achieve matching of activations Espx[y] = y® if uf is in
the range (—o0, 1). We thus chose the scaling ¢ such that

Pz ot >1) >4, (7

where v < 1 is a threshold and PP is w.r.t. the empirical dis-
tribution over the inputs z in a batch as well as the spatial di-
mensions. Making ~ closer to 1 reduces the approximation
error, however, at the cost of a lower signal-to-noise ratio in
y. We find  experimentally in section 5.1. A common ap-
proach in the literature is to assume that the distribution of
x is approximately Gaussian (e.g., [8]). We have observed
that it is a poor approximation e.g., for networks with Max-
Pooling such as VGG, leading to poor initialization perfor-
mance for them. In contrast, using the empirical distribution
we found to work well in both cases (we tested AIICNN
and VGG). When t* is chosen, we divide the weight of the
linear layer W1 channel-wise by ¢/*. Because ReLU is 1-
homogenous, this preserves the equivalence of the whole
block. The block so transformed is passed to the next step.

4.1.2 Initialization of Weights

Since the weights in SBN are stochastic, we match their ex-
pected values to real-valued weights W . With the logistic
noise Z used for weights, we have, e.g. for W+:

E[W*] = E[[V* -2 > 0]) = B(V*>2) = S(V1), ®)

where S is the logistic sigmoid function. Assuming W%
is positive, to achieve an expected value E[W] = WF,
we set latent weights as V* = logit(W%) and V- =
logit(10~13). The case when W% is negative is symmet-
ric. The matching of this expectation however makes sense
only when |IW | < 1. In order to meet these constraints we
set

R

5o

=max Wo; 1.1, )
i,k,l



Figure 3: Example of real-valued 3 x 3 kernels (a) and two
samples of the initialized stochastic ternary model (b,c). It
is seen that the initialization provides a reasonable set of
filters with some entries more deterministic and some more
noisy and amenable to changes in training.

where 7 is input channel, o is output channel and k, ! are
spatial kernel coordinates. To preserve equivalence we must
divide WE by s in the output channels. As a result, the
whole block of ReLU network preserves equivalence with
the original one and we have |[W#| < 1.

As we discussed above many weights W1 in pretrained
networks are often close to zero. If we were to approxi-
mate them with a single stochastic binary {—1, 1} weight,
we would obtain many weights “undecided”, which are
+1 with equal probability. If there are many such unde-
cided states, the gradient of the model has a very high vari-
ance and a very small expectation. In the proposed ternary
weight model, we can represent weights close to 0 with
very low variance. Fig. 3 illustrates samples of stochastic
ternary filters after the proposed initialization. Fig. 2 com-
pares tSNE embeddings that we could achieve using binary
weights and ternary weights and illustrates the lose of rep-
resentation capability when using binary weights.

4.1.3 Initialization of Scales

Ideally, we want for all block inputs z = x the expected
SBN features a to match accurately the real-valued features
a’®. So far we defined conversions of the first three op-
erations of ReLU block eq. (4) and SBN block eq. (5) to
preserve expectations of activations and weights separately.
However, these steps are approximate and do not guaran-
tee a good alignment of feature distributions. We therefore
choose affine scaling parameters s, b in the last operation in
order to align the first two moments of a and a*. The non-
standard part here, implied by the use of SBN model, is that
we need to collect statistics over data and spatial dimensions
while averaging out noises in a. Let

mi = Edatala®],  mi" = Eaqaa[(a®)?],  (10a)
where mf*, m& are vectors of the size of channels and the
square is coordinate-wise. Note that these statistics do not
change with the equivalent transforms applied to the ReLU
block and can be computed on the initial network. Let a =

Espn[a] and let

ml(a) = ]Edata[d]y (11)
my (@) = Egatala?]. (12)
Recall that the notation Eggn means averaging over all in-

jected noises in the current as well as all preceding SBN
blocks. Then we can compute s, b as:

s = , (13a)

—mq(a)s. (13b)

In the experiments section 5.1 we show that the proposed
initialization based on matching expectations and statistics
of features allows to preserve a significant portion of accu-
racy, and especially so for deeper layers.

4.2. Optimization Based Feature Transfer

Given the statistics-based initialization of SBN, we pro-
ceed to the full transfer of intermediate features using
gradient-based optimization. Still considering one block at
a time we want to achieve a closer match between @ and a’*.
The task can be formulated as the optimization problem

i Edata [D(a, a™)], 14
ve i, Baa [ D(a,0) (14

where D is a dissimilarity function, for which we will con-
sider several choices. The common MSE dissimilarity is de-
fined as Dysg(a, a®?) = |ja — aRHQ. Notice we apply it to
the expected SBN features @ = Egpn|[a]. As alternatives we
consider attention loss [15], denoted D prT, which we also
apply to expected features a and our proposed innovation:
the MSE loss on the next layer applied for optimizing the
current layer, denoted Dysg+. The rationale for the later is
that it still enforces proximity of inner representations while
being robust to deviations in representations that are of no
importance to the next layer.

4.3. Transforming the Whole Network

Prior to convering to SBN, if the teacher network has
BatchNorm layers, we compute their test-time equivalent
affine transforms to obtain blocks of the form (4). We per-
form the whole network conversion as described above: we
process it incrementally, starting from block 1, in each step
initializing and re-optimizing the so-far converted part us-
ing the feature transfer formulation. For the optimization
part we will experimentally explore possible options: which
losss is better to use, should we adjust only the current block
or including all the blocks below it, how long to train for the
feature transfer, etc.
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Figure 4: Statistics of units after each convolutional and linear layers following the converted block at layers (7,8), which
correspond to block # 4 at Fig. 1. The statistics with the SBN block (blue) are of the mean values over SBN noises approxi-
mated using 10 samples. Hence the histogram after binary activation (7) is not a discrete 0-1 distribution. Observe that even
though the statistics after conv (8) are accurately aligned, more fine-grained differences in feature representations, not visible

in the distributions, cause significant shifts downstream.

5. Experiments

For our experiments, we consider the CIFAR10 dataset
and AII-CNN architecture in Fig. | as a referenced ReLU
network. This architecture has no max-pooling layers and
no huge fully connected layers as in VGG. To study the
individual steps of the initialization procedure we used a
low-end model denoted AIICNNS89, which was trained us-
ing common techniques and achieves 89% testing accuracy.
In the final experiment we also transfer a high-end model of
the exactly same architecture but trained using the method
from [24] to 94.3% test accuracy', denoted AIICNN94.

The first goals of experiments are to verify how the in-
dividual steps of the proposed initialization perform, where
are the biggest losses in the accuracy and which choices in
these steps lead to a better individual step performance as
well as that of the full feature transfer. We then set to an-
swer the following questions. Does a better initialization
allow to achieve a better test performance and not merely
speed up the training? Can the initialization by transferring
intermediate features lead to improved generalization capa-
bilities for the trained SBN?

5.1. Analytical Initialization

In Fig. 4 we illustrate how replacing one ReLU block (4)
with SBN block (5) via proposed statistics based initializa-
tion aligns the distributions at this block, but at the same
time causes shifts in the downstream distributions.

In the next experiment we study how the threshold ~ for

!'The model selection was made by the validation accuracy.

10] gammay
. 0.68

0.95
= 0.99

test accuracy

7 9
block index

Figure 5: Test accuracy after statistics-based conversion of
one block at given index (shown on x-axis) for different val-
ues of . Converting more shallow blocks incurs more sig-
nificant loss of accuracy and ~ has somewhat different effect
at different depth. The dashed line represents the referenced
network test accuracy.

the activation initialization affects the accuracy of the net-
work after the analytical matching. Fig. 5 illustrates the
tendencies using several values of y. We observe that con-
verting blocks in the beginning of the network results in
a significantly larger accuracy degradation (= 40%) com-
pared to that of converting deeper blocks (= 10%). We also
see that values close to 1 are sub-optimal for all blocks. We
empirically chose threshold v ~ 0.85 as a robust value for
all layers.

5.2. Optimization-Based Feature Transfer

The next step after the analytical initialization of the pa-
rameters in the block is the matching of its output features.
Here we conduct a series of experiments to determine a suit-
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Figure 6: Comparison of different losses for feature trans-
fer: Dyse, Dvse+, Datr. We transfer a single block 4
(left) or 5 (right) in AIICNNS89 by optimizing the respec-
tive loss, and measure the validation accuracy of the whole
network. The network accuracy improves when optimizing
the first two losses, but more so when optimizing Dysg -
The difference is substantial after epoch 1 and is significant
even with more epochs. In contrast, while Dapr can be
easily optimized (top plots), its lower value does not secure
a better accuracy (bottom plots).

10 === reference accuracy
= analytical
analytical + 1 epoch
e analytical + 150 epochs

test accuracy

block index

Figure 7: Comparison of the test accuracy with 1) analytical
statistics-based initialization, 2) after one features matching
epoch and 3) after 150 epochs. Optimization-based feature
transfer improves the accuracy without using the class la-
bels.

able loss for feature transfer, and the incremental optimiza-
tion strategy.

In Fig. 6 we compare different losses applied at the fea-
ture transfer step. For all losses we used Adam optimizer
with learning rate 0.001 and 5 samples of the SBN noises
for estimating Fspn. From Fig. 6 we see that the accuracy
increases faster and achieves higher final value when opti-
mizing Dysgy rather than Dysk and the previously used
attention loss [15] actually has a negative impact on accu-
racy.

training regime
mmm block
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= block
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Figure 8: (Top) The number of training epochs needed in or-
der to achieve an approximately stationary point of Dysg
when converting blocks incrementally. The result shows
that more work is needed in the middle of the network. The
graph also compares optimizing the current block parame-
ters (red) or the whole current SBN network (yellow).
(Bottom) Respective validation accuracy retained after the
respective conversion stage (at block 13 the whole network
is converted).

In the next step we experiment with the incremental op-
timization strategy. The proposed incremental procedure
leaves a few free choices: how many epochs to optimize
and whether to optimize parameters of the already con-
verted layers as we go deeper. In Fig. 7 we show that a
large portion of the accuracy gap is closed in just one epoch
of Dyse+ optimization. Training further improves the re-
sults only marginally. At the same time we found that one
epoch per block was not sufficient for converting the whole
network. In Fig. 8 (top) we show the number of epochs
needed to optimize the target Dysg+ loss (achieve its gra-
dient value < ¢) depending on the block depth. We there-
fore use this strategy as a stopping criterion instead of a
predefined number of epochs. It is found to be significantly
larger for blocks in the middle. From Fig. 8 we also see that
optimizing parameters of all the preceding blocks gives both
faster training and more accurate final results as compared
to optimizing only parameters of the current block.

5.3. Training with Class Labels

We now verify how supervised training with class labels
and cross-entropy loss benefits from the proposed initializa-
tion method. Towards this end we compare: 1) SBN with
random initialization and data-driven initialization [16] of
scales and biases 1) randomly initialized SBN with batch
normalization layers, 3) Initialization with our method from
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Figure 9: Validation accuracy of SBN models of the same
network structure during their training when started from
different initialization points. Our initialization has a signif-
icant advantage at the start and over 10% higher accuracy at
the end of the training. The yellow and red circles indicate
the accuracy when initialized (84% for AIICNN89 and 88%
for AIICNN94).

AIICNNS9 and 4) initialization with our method from All-
CNN94. Note that with the exception of 1) we do not use
batch normalization. It appears to be a key component in
SOTA BNN training, but with our initialization it is not nec-
essary.

The training setups was the same for all four cases: we
use the same architecture obtained by replacing blocks of
AIICNN with the respective blocks (5), denoted AIICNN-T
(T for ternary), same gradient estimators and Adam opti-
mizer with learning rate 0.001.

Based on the results in Fig. 9 and table 1 we make the
following observations. I) our initialization using either of
the real-valued networks has a significant advantage over
a random initialization, giving a well-performing starting
point and keeping the advantage even after 600 epochs. II)
A higher accuracy of the teacher network leads to nearly
proportionally higher accuracy of the initial point as well
as of the final obtained model. III) When initializing from
a high-performance point, the trained SBN surpasses many
previous SOTA results in accuracy with an architecture that
has a smaller computation cost. This is even so if we run
the SBN in the deterministic mode (noises replaced by their
mean values). This indicates that we have transferred some
useful representations that lead to an easier training and a
better generalization. Perhaps even a more surprising obser-
vation, is that SBN surpasses the accuracy of the reference
real-valued network, thus not only closing the gap in the
performance but even suggesting that it has a sufficient rep-
resentation capability and that perhaps its stochastic train-
ing helps to regularize.

Table 1: Comparison with SOTA. We compare the com-
putation cost (memory, floating point, integer and binary
operations) of test-time models and the test accuracy they
achieve.

BINARY MODELS SIZE AND COMPLEXITY

Model Weights FLOPS IOPS BOPS

AIICNN-T 0.3Mb 5-10° 4.2-10° 2.7.108

VGGSmall [12] 1.7Mb 7.5-10 1.9-10" 6.1-10%

Dingetal. []Net5 5Mb 2.3-10"7 1.7-10% 5.4-10°
CIFAR-10 TEST ACCURACY

Method Model Deterministic  10-sample

Our AlICNN-T 94.53 95.7 + 0.1

Shekhovtsov & VGGSmall 89.7 90.5

Yanush [25]

Peters et al. [19] VGGSmall 88.61 91.2

VGGSmall 89.85 -
VGGSmall 89.83 -

Hubara et al. [12]
Rastegari et al. [21]

+scaling
Ding et al. [8] Net 5 91.56 -
Bulat et al. [4] 17-cell* 93.7 -

* The quoted result if for basic data augmentation. The network has real-
valued skip connections with parameters and a complicated structure, we
could not estimate its complexity.

6. Conclusion and Future Work

We have proposed an initialization scheme for SBNs
which incrementally converts ReLU network block-by-
block, first using basic statistics and then re-optimizing for
better feature transfer. This initialization scheme takes into
account noises in SBNs and is invariant to the equivalent
transformations of the original ReLU network. In contrast
to using a pretraining phase [3, 6, 1 5] where models used are
in between real-valued and binarized networks and are not
trained to high performance, we showed that with a ternary
architecture and the proposed method it is possible to reuse
already available high-performance ReL.U networks to ini-
tialize SBNs by transferring their internal features and to
close and even surpass the accuracy gap. However, further
experimental verification of these observations needs to be
conducted on a large-scale data.
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